188 research outputs found

    Beam Loss Induced Quench Levels

    Get PDF

    Methods for the Evaluation of Quench Temperature Profiles and their Application for LHC Superconducting Short Dipole Magnets

    Get PDF
    This paper presents a study of the thermal effects on quench performance for several Large Hadron Collider single aperture short dipole models. The analysis is based on the temperature profile in a superconducting magnet evaluated after a quench. Peak temperatures and temperature gradients in the magnet coil are estimated for different thicknesses of insulation layer between the quench heaters and the coil and different powering and protection parameters. The results show clear correlation between the thermo-mechanical response of the magnet and quench performance. They also display that the optimisation of the position of quench heaters can reduce the decrease of training performance caused by the coexistence of a mechanical weak region and of a local temperature rise

    Performance Evaluation and Quality Assurance Management during the Series Power Tests of LHC Main Lattice Magnets

    Get PDF
    Within the LHC magnet program a series production of superconducting dipoles and quadrupoles has recently been completed in industry and all magnets were cold tested at CERN. The main features of these magnets are: two-in-one structure, 56 mm aperture, two layer coils wound from 15.1 mm wide Nb-Ti cables, and all-polyimide insulation. This paper reviews the process of the power test quality assurance and performance evaluation, which was applied during the LHC magnet series tests. The main test results of magnets tested in both supercritical and superfluid helium, including the quench training, the conductor performance, the magnet protection efficiency and the electrical integrity are presented and discussed in terms of the design parameters and the requirements of the LHC project

    OSQAR Revised Program

    Get PDF
    This Memorandum is a follow-up of the 2009 OSQAR Status Report highlighting the revised program with an emphasis for the next two years

    A method to evaluate the temperature profile in a superconducting magnet during a quench

    Get PDF
    A simple method to derive the temperature profile in a superconducting magnet during a quench from measured voltage signals is described. The method was applied to several Large Hadron Collider single aperture dipole models. These measurements show the strong correlation between parameters of the magnet protection system and powering on the one hand and the resulting temperature gradient in the magnet coil on the other. The method allows the localisation of critical points in the magnet design, in particular, the efficiency of the magnet protection system can be evaluated

    Investigation of the Periodic Magnetic Field Modulation in LHC Superconducting Dipoles

    Get PDF
    The windings of high-field accelerator magnets are usually made of Rutherford-type superconducting cables. The magnetic field distribution along the axis of such magnets exhibits a periodic modulation with a wavelength equal to the twist pitch length of the cable used in the winding. This effect, resulting from quasi-persistent currents, was investigated with a Hall probes array inserted inside the aperture of the LHC superconducting dipoles, both in short models and full-scale prototypes. The amplitude and the time dependence of this periodic field oscillation have been studied as a function of the magnet current history. The origin and the impact on the LHC dipoles stability of the non-uniform current redistribution producing such a field modulation are discussed

    Temperature Profiles During Quenches in LHC Superconducting Dipole Magnets Protected by Quench Heaters

    Get PDF
    The efficiency of the magnet protection by quench heaters was studied using a novel method which derives the temperature profile in a superconducting magnet during a quench from measured voltage signals. In several Large Hadron Collider single aperture dipole models, temperature profiles and temperature gradients in the magnet coil have been evaluated in the case of protection by different sets of quench heaters and different powering and protection parameters. The influence of the insulation thickness between the quench heaters and the coil has also been considered. The results show clear correlation between the positions of quench heaters, magnet protection parameters and temperature profiles. This study allowed a better understanding of the quench process mechanisms and the efficiency assessment of the different protection schemes

    Investigation of the Periodic Magnetic Field Modulation Inside Apertures of LHC Superconducting Dipole Models

    Get PDF
    The windings of high-field accelerator magnets are usually made of Rutherford-type superconducting cables. The magnetic field distribution along the axis of such magnets exhibits a pronounced periodic modulation with a wavelength equal to the twist pitch length of the cable used in the winding. Such an effect, resulting from quasi-persistent currents, was investigated with a Hall probe array inserted inside the aperture of 1-metre long LHC superconducting dipole models. The amplitude and the time dependence of this periodic field oscillation have been studied as a function of the transport current history. The impact on the magnet stability of the non-uniform current redistribution producing such a field modulation is discussed

    Modelling of Quench Limit for Steady State Heat Deposits in LHC Magnets

    Get PDF
    A quench, the transition of a conductor from the superconducting to the normal conducting state, occurs irreversibly in the accelerator magnets if one of the three parameters: temperature, magnetic field or current density exceeds a critical value. Energy deposited in the superconductor by the particle beams provokes quenches detrimental for the accelerator operation. In particular if particles impacting on the vacuum chamber and their secondary showers depose energy in the magnet coils. The Large Hadron Collider (LHC) nominal beam intensity is 3.2 ldr 10^14 protons. A quench occurs if a fraction of the order of 10^7 protons per second is lost locally. A network model is used to simulate the thermodynamic behaviour of the magnets. The heat flow in the network model was validated with measurements performed in the CERN magnet test facility. A steady state heat flow was introduced in the coil by using the quench heaters implemented in the LHC magnets. The value of the heat source current is determined by the network model and the magnet coil current which is required to quench the coil is predicted accordantly. The measured and predicted value comparison is regarded as a sensitive test of the method

    Quench localization and current redistribution after quench in superconducting dipole magnets wound with Rutherford-type cables

    Get PDF
    Quench development is studied for the first few milliseconds after the start of a quench with the help of voltage taps and pickup coils in the LHC accelerator dipole models. The reliability of the pickup coil method (the so called quench antenna) is discussed. By studying the flux through the pick-up coils as a function of time, information about the current redistribution after the quench in the magnet cable is obtained. Several possible current redistribution models are studied: current transfer between the two layers of the cable, adjacent strand current transfer and redistribution governed by magnetoresistance, strand and interstrand resistance. Comparison of the simulations with the measurements in the magnets shows that the magnetoresistance of the copper in the cable matrix is the main mechanism responsible for current redistribution just after a quench
    • …
    corecore